ALLI ( ALJABAR LINIER ) MATRIKS

Assalamualaikum Wr.wb.
Saya akan sedikit berbagi tentang Aljabar linear. Ini adalah First Blog saya dan Saya mulai Blog Ini dengan Bismillah. Semoga kedepannya Tulisan yang saya muat ini dapat bermanfaat untuk banyak orang. Aamiin Ya Robbal Alamin.

MATEMATIKA ALLI

(ALJABAR LINIER)

SEJARAH ALJABAR
  1. Pengertian Aljabar
    Aljabar berasal dari Bahasa Arabal-jabr” yang berarti “pertemuan”, “hubungan” atau“perampungan”) adalah cabang matematika yang dapat dicirikan sebagai generalisasi dan perpanjangan aritmatika. Aljabar juga merupakan nama sebuah struktur aljabar abstrak, yaitu aljabar dalam sebuah bidang.
      Aljabar adalah cabang matematika yang mempelajari struktur, hubungan dan kuantitas. Untuk mempelajari hal-hal ini dalam aljabar digunakan simbol (biasanya berupa huruf) untuk merepresentasikan bilangan secara umum sebagai sarana penyederhanaan dan alat bantu memecahkan masalah. Contohnya, x mewakili bilangan yang diketahui dan y bilangan yang ingin diketahui.
  1. Asal Usul Aljabar
       Asal mula aljabar dapat di telusuri berasal dari Babilonia kuno yang mengembangkan system matematika yang cukup rumit, dengan hal ini mereka mampu menghitung dalam cara yang mirip dengan aljabar sekarang ini.
       Dengan menggunakan sistem ini, mereka mampu mengaplikasikan rumus dan menghitung solusi untuk nilai yang tak diketahui untuk kelas masalah yang biasanya dipecahkan dengan menggunakan persamaan Linier persamaan Kuadrat dan Persamaan Linier tak tentu. Sebaliknya, bangsa Mesir dan kebanyakan bangsa India, Yunani, serta Cina dalam milenium pertama sebelum masehi, biasanya masih menggunakan metode geometri untuk memecahkan persamaan seperti ini, misalnya seperti yang disebutkan dalam “the Rhind Mathematical Papyrus”, “Sulba Sutras”, “Eucilid’s Elements” dan “The Nine Chapters on the Mathematical Art”. Hasil bangsa Yunani dalam Geometri, yang tertulis dalam kitab elemen, menyediakan kerangka berpikir untuk menggeneralisasi formula metematika di luar solusi khusus dari suatu permasalahan tertentu ke dalam sistem yang lebih umum untuk menyatakan dan memecahkan persamaan, yaitu kerangka berpikir logika Deduksi.
       Seperti telah disinggung di atas istilah “aljabar” berasal dari kata Arab “al-jabr” yang berasal dari kitab “Al-Kitab aj-jabr wa al-Muqabala” (yang berarti “The Compendious Book on Calculation by Completion and Balancing”) Yang ditulis oleh matematikawan Persia Muhammad ibnu Musa Al-Khawarizmi. Kata “Al-Jabr” sendiri sebenarnya berarti penggabungan (reunion). Matematikawan Yunani di zaman Hllenisme, Diophantus, secara tradisional dikenal sebagai “Bapak Aljabr”.
Walaupun sampai sekarang masih diperdebatkan, tetapi ilmuwan yang bernama R Rashed dan Angela Armstrong dalam karyanya bertajuk The Development of Arabic Mathematics, menegaskan bahwa Aljabar karya Al-Khawarizmi memiliki perbedaan yang signifikan dibanding karya Diophantus, yang kerap disebut-sebut sebagai penemu Aljabar. Dalam pandangan ilmuwan itu, karya Khawarizmi jauh lebih baik di banding karya Diophantus.
        Al-Khawarizmi yang pertama kali memperkenalkan aljabar dalam suatu bentuk dasar yang dapat diterapkan dalam kehidupan sehari-hari. Sedangkan konsep aljabar Diophantus lebih cenderung menggunakan aljabar sebagai alat bantu untuk aplikasi teori bilangan.
                                  
    


 Gambar 1 
 Al-Khawarizmi





 

                    








                                                                      Gambar 2
                                                                      Diophantus


  Para sajarawan meyakini bahwa karya al-Khawarizmi merupakan buku pertama dalam sejarah di mana istilah aljabar muncul dalam konteks disiplin ilmu. Kondisi ini dipertegas dalam pembukuan, formulasi dan kosakata yang secara teknis merupakan suatu kosakata baru.
      Ilmu pengetahuan aljabar sendiri sebenarnya merupakan penyempurnaan terhadap pengetahuan yang telah dicapai oleh bangsa Mesir dan Babylonia. Kedua bangsa tersebut telah memiliki catatan-catatan yang berhubungan dengan masalah aritmatika, aljabar dan geometri pada permulaan 2000 SM. Dalam buku Arithmetica of Diophantus terdapat beberapa catatan tentang persamaan kuadrat. Meskipun demikian persamaan yang ada belum terbentuk secara sistematis, tetapi terbentuk secara tidak sengaja melalui penyempurnaan kasus-kasus yang muncul. Karena itu, sebelum masa al-Khawarizmi, aljabar belum merupakan suatu objek yang secara serius dan sistematis dipelajari.

     ALJABAR LINIER

Matrik dan Operasi-Operasinya.
 
Matriks adalah susunan segi empat siku-siku dari bilangan yang dibatasi dengan tanda kurung. Suatu matriks tersusun atas baris dan kolom, jika matrriks tersusun atas m baris dan n kolom maka dikatakan matriks tersebut berukuran ( berordo) m x n. Penulisan matriks biasanya menggunakan huruf besar A,B,C dan seterusnya, sedangkan penulisan matriks beserta ukurannya ( matriks dengan m baris dan n kolom) adalah 
dan seterusnya.
Jenis-Jenis matriks
ada beberapa jenis matriks yang perlu diketahui dan sering digunakan pada pembahasan selanjutnya, yaitu :
a. Matriks Bujur Sangkar.
Matriks bujur sangkar adalah matriks yang jumlah barisnya sama dengan jumlah kolomnya. Karena sifatnya yang demikian ini, dalam matriks bujur sangkar dikenal dengan istilah elemen diagonal yang berjumlah n untuk matriks bujur sangkar yang berukuran nxn, yaitu :
b. Matriks Diagonal
Matriks diagonal adalah matriks yang elemen bukan diagonalnya bernilai nol. Dalam hal ini tidak disyaratkan bahwa elemen diagonal harus tak nol.







c. Matriks nol. 
    Matriks Nol merupakan matriks yang semua elemenya bernilai nol.
d. Matriks Segitiga.
    Matriks segitiga adalah matriks bujur sangkar yang elemen-elemen dibawah atau diatas elemen diagonal bernilai nol. Jika yang bernilai nol adalah elemen-elem dibawah elemen diagonal maka disebut matriks segitiga atas, sebaliknya disebut matriks segitiga bawah. Dalam hal ini,juga tidak disyaratkan bahwa elemne diagonal harus bernilai tak nol.
Matriks A adalah matriks segitiga bawah, matriks B adalah matriks segitiga atas sedangakan matriks C merupakan matriks segitiga bawah dan juga matriks segitiga atas.

e. Matriks Identitas

    Matriks identitas adalah matriks diagonal yang elemen diagonalnya bernilai 1.

f. Matriks dalam bentuk  eselon baris tereduksi.

   Suatu matriks dikatakan memiliki bentuk eselon baris tereduksi jika memenuhi syarat-syarat berikut :
   1. Untuk semua baris yang elem-elemenya tak nol, maka bilangan pertama pada baris tersebut
       haruslah = 1 ( disebut satu utama ).
   2.Untuk sembarang dua baris yang berurutan, maka satu utama yang terletak pada baris yang lebih
      bawah harus terletak lebih ke kanan daripada satu utama pada baris yang lebih atas.
   3.Jika suatu baris semua elemennya adalah nol, maka baris tersebut diletakkan pada bagian bawah
     matriks
   4. Kolom yang memiliki satu utama harus memiliki elemen nol ditempat lainnya.
 Operasi-operasi Matriks

a. Operasi penjumlahan dapat dilakukan pada dua buah matriks yang memiliki ukuran yang sama.
Aturan penjumlahan.

Dengan penjumlahan elemen-elemen yang bersesuaian pada kedua matriks.


Comments

Popular posts from this blog

ALLI(Aljabar Linier) "Metode Ekspansi Larplace"

ALLI-METODE CHIO

ALLI-Metode Crout